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Abstract—We present an algorithm for compiling arbitrary
unitaries into a sequence of gates native to a quantum processor.
As CNOT gates are error-prone for the foreseeable Noisy-
Intermediate-Scale Quantum devices era, our A* inspired algo-
rithm minimizes their count while accounting for connectivity. We
discuss the formulation of synthesis as a search problem as well
as an algorithm to find solutions. For a workload of circuits with
complexity appropriate for the NISQ era, we produce solutions
well within the best upper bounds published in literature and
match or exceed hand tuned implementations, as well as other
existing synthesis alternatives. In particular, when comparing
against state-of-the-art available synthesis packages we show 2.4×
average (up to 5.3×) reduction in CNOT count. We also show
how to re-target the algorithm for a different chip topology and
native gate set while obtaining similar quality results. We believe
that tools like ours can facilitate algorithmic exploration and
guide gate set discovery for quantum processor designers, as
well as being useful for optimization in the quantum compilation
tool-chain.

I. INTRODUCTION

There is a high probability that quantum computing will
deliver transformational scientific results within the next few
decades. Right now, we are in an era of effervescence,
where the first available [1]–[3] hardware implementations of
quantum processors have opened the doors for exploration in
quantum hardware, software, and algorithmic design. All three
lines of inquiry have in common that the unitary matrix asso-
ciated with the transformation (algorithm, gate, circuit etc.) is
readily obtained, while deriving an efficient circuit to represent
a desired transformation is generally difficult. Quantum circuit
synthesis is an approach to derive a circuit that implements
a given unitary and can thus facilitate advances in all these
directions: hardware, software and algorithmic exploration.

Research into quantum circuit synthesis has a long [4]–
[12] history. Synthesis can be a tool of great utility in the
quantum development kit for the Noisy Intermediate-Scale
Quantum (NISQ) Devices era, which is characterized by
design space exploration at small qubit scale, together with
a need for highly optimized implementations of circuits. To
foster adoption, tools need to overcome some of the currently
perceived shortcomings:

● Synthesis generates deep circuits
● Synthesis does not account for hardware topology
● Synthesis is slow
In this paper we describe a pragmatic synthesis algorithm

designed to minimize the number of CNOT gates in the
resulting circuit. As CNOT has low fidelity on existing hard-
ware and is expected to be the limiting factor in the near
future of NISQ devices, the CNOT count metric has been

a frequent target for investigation [12]–[15]. We show how
to generate short CNOT count circuits while accounting for
chip topology by: 1) posing the problem of finding a circuit
structure as a tree search and using a highly effective algorithm
for shortest path problems; 2) combining the search with
numerical optimization for instantiation of circuit parameters.

The algorithm is inspired by the A* [16] search strategy
and works as follows. We start building the circuit in layers:
at each step we add a fixed structure 2-qubit building block
where chip connectivity allows it. The building block contains
generic parameterized single qubit unitaries and native 2-qubit
gates, in our case CNOT . We pass the parameterized circuit
into an optimizer [17], which instantiates the parameters for
the partial solution such that it minimizes a distance function.
At each step of the search, a heuristic is used to select a circuit
to expand. The algorithm stops when the current solution
is indistinguishable from the target unitary. We now have a
concrete circuit that can be implemented on hardware.

We target two superconducting qubit architectures: the
QNL8QR-V5 chip developed by the UC Berkeley Quantum
Nanoelectronics Laboratory [18], with eight superconducting
qubits connected in a line topology and the IBM Q5 [19] chip
with qubits connected in a “bowtie”. Both chips have a similar
native gate set composed of single qubit rotations and CNOT
gates. For evaluation we use known algorithms and gates,
e.g. QFT, HHL, Fredkin, Toffoli etc., with implementations
obtained from other researchers [20].

Our approach offers several contributions that advance the
state of the art in quantum circuit synthesis. First, the data
dispels the concern that synthesis produces deep circuits. A*
search combined with numerical optimization produces nearly
optimal depth circuits. When comparing against circuits that
were hand-optimized, our implementation matches or reduces
the CNOT count. When comparing against state-of-the-art
generic synthesis tools such as UniversalQ [21], our circuits
are shorter, with 2.4× average reduction in CNOT gates, and
by as much as 5.3×. When comparing against state-of-the-art
domain specific optimizers [22] we reduce circuit depth by as
much as 5×.

Second, to our knowledge we provide the first practical
demonstration of topology aware synthesis that does not
significantly increase circuit length. Specializing the search
strategy for a given topology results in circuits than do not
need additional SWAP operations inserted at the mapping
stage. Existing approaches assume all-to-all connectivity, and
modifications to handle restricted topologies introduce large
(e.g. 4× [13]) proportionality constants. In our case, we ob-
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serve only modest differences between circuits synthesized for
all-to-all and circuits synthesized for the linear topology. When
specializing for the linear topology, we observe increased
CNOT count on only five circuits (half workload), with an
average of 15% increase for the whole workload. Furthermore,
the depth difference from topology customization cannot be
recuperated by the rest of the optimization toolchain: the
final depth of a circuit synthesized for all-to-all topology
and then mapped for the linear topology by IBM QISKit, is
longer than the depth of the circuit synthesized directly for
the linear topology. When using circuit mapping to specialize
for topology, we observe a 53% average increase in CNOT
count, and up to 4×, compared to synthesizing directly for the
linear topology.

We also show how our infrastructure can be easily retargeted
to different native gate sets, qutrit [23] based circuits and
to generate state preparation circuits. To our knowledge, this
is the first demonstration of synthesis of multi-gate multi-
qutrit based circuits. When comparing our state preparation
results against IBM Qiskit, we observe circuits shorter by 36%
and KL divergence smaller by 4.8% on average. The results
indicate that synthesis can be a very useful tool in the stack
of quantum circuit compilation tools.

The rest of this paper is structured as follows. In Section II
we introduce the problem, its motivation and provide a short
primer on quantum computing. In Section III we describe our
algorithm and its implementation, while in Section IV-A we
present results for the three usage scenarios. In Section V we
discuss future uses of synthesis in the NISQ era, while in
Section VI we describe the related work.

II. BACKGROUND

In quantum computing, a qubit is the basic unit of quan-
tum information. Physically, qubits are two-level quantum-
mechanical systems, whose general quantum state is repre-
sented by a linear combination of two orthonormal basis states
(basis vectors). The most common basis is the equivalent of
the 0 and 1 values used for bits in classical information theory,

respectively ∣0⟩ = [
1
0
] and ∣1⟩ = [

0
1
]. The generic qubit state

is a superposition of the basis states, i.e. ∣ψ⟩ = α ∣0⟩ + β ∣1⟩,
with complex amplitudes α and β such that ∣α∣2 + ∣β∣2 = 1.

A. Gate Sets in Quantum Computing

The prevalent model of quantum computation is the circuit
model introduced by [24], where information carried by qubits
(wires) is modified by quantum gates, which mathematically
correspond to unitary operations. A complex square matrix
U is unitary if its conjugate transpose U∗ is its inverse, i.e.
UU∗

= U∗U = I .
In the circuit model, a single qubit gate is represented by

a 2 × 2 unitary matrix U. The effect of the gate on the qubit
state is obtained by multiplying the U matrix with the vector
representing the quantum state ∣ψ′⟩ = U ∣ψ⟩.

The most general form of the unitary for a single qubit gate
is the “continuous” or “variational” gate representation.

U3(θ, φ, λ) = (
cos θ

2
−eiλsin θ

2
eiφsin θ

2
eiλ+iφcos θ

2

) (1)

In quantum computing theory, a set of quantum gates is
universal if any computation (unitary transformation) can be
approximated on any number of qubits to any precision when
using only gates from the set. On the hardware side, quantum
processors expose a set of native gates which constitute a
universal set. Quantum processors built from superconducting
qubits usually provide single qubit rotations (Rx, Ry , and Rz)
and two qubit CNOT , CZ or SWAP gates.

A CNOT , or controlled NOT gate, flips the target qubit iff
the control qubit is ∣1⟩. CNOT has the following unitary:

CNOT =

⎛

⎜
⎜
⎜

⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎟

⎠

(2)

A circuit is described by an evolution in space (application
on qubits) and time of gates. Figure 1 shows an example circuit
that applies single qubit and CNOT gates on three qubits.

B. Background on Quantum Circuit Synthesis

A quantum transformation (algorithm, circuit) on n qubits
is represented by a unitary matrix U of size 2n × 2n. The
goal of circuit synthesis is to decompose U into a product
of terms, where each individual term captures the application
of a quantum gate on individual qubits. This is depicted in
Figure 1. The quality of a synthesis algorithm is evaluated
by the number of gates in the circuit it produces and by the
distinguishability of the solution from the original unitary. We
discuss in more detail related work in synthesis in Section VI
and summarize in this section only the pertinent state-of-the-
art results for NISQ devices.

Circuit length provides the optimality criteria for synthesis
algorithms: shorter circuits are better. CNOT count is a direct
indicator of overall circuit length, as the number of single qubit
generic gates introduced in the circuit is proportional with a
constant given by decomposition rules. Thus CNOT count or
circuit length can be used interchangeably when discussing
optimality criteria. As CNOT gates are problematic on NISQ
devices, state-of-the-art approaches [13], [15] directly attempt
to minimize their count.

There are two main types of synthesis approaches: unitary
decomposition using linear algebra techniques, and empirical
search based techniques. The state-of-the-art linear algebra
techniques use Cosine-Sine Decomposition [13], [15] and
provide upper bounds on circuit depth. We use the tightest
published upper bounds for the evaluation of our approach, as
well as direct comparisons with the UniversalQ [21] compiler,
which implements these algorithms. Empirical approaches
use search heuristics for decomposition. We discuss these in
Section VI. Most existing algorithms are not often used in
practice because they produce long circuits and lack topology
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Fig. 1. Unitaries (above) and tensors products (below). The unitary U
represents a n = 3 qubit transformation, where U is a 2n×2n (8×8) matrix.
The unitary is implemented (equivalent or approximated) by the circuit on
the right hand side. The single qubit unitaries are 2 × 2 matrices, while
CNOT is a 22 × 22 matrix. The computation performed by the circuit is
(I2 ⊗ U4 ⊗ U5)(I2 ⊗ CNOT )(U1 ⊗ U2 ⊗ U3), where I2 is the identity
2×2 matrix and ⊗ is the tensor product operator. The right hand side shows
the tensor product of 2 × 2 matrices.

awareness. The notable exception is the ubiquitous deploy-
ment of KAK [12] optimal 2-qubit unitary decomposition in
commercial [25]–[27] compilers.

Table I presents the best known upper bounds on CNOT
count for synthesis algorithms. Note that for three qubits the
bound is 20 CNOT, while for four qubits it is 100 CNOT.
Asymptotically, the tightest bound is introduced by [13] to
a CNOT count of 0.16 ∗ (4m + 2 ∗ 4n). Because of the
exponentiation, for current generation devices it is important
to demonstrate quantitatively that we can attain shorter depth.

Taking chip qubit connectivity into account during synthesis
affects circuit depth. Most algorithms implicitly assume full
qubit connectivity, and therefore may place CNOT gates be-
tween qubits that are not physically connected. In these cases,
a mapping algorithm is needed to introduce SWAP gates,
with each SWAP gate implemented using three CNOT gates.
Recent approaches try to provide bounds when specializing for
topology by estimating the number of additional SWAPs. The
algorithms presented by [15] increase the CNOT count by a
factor of nine when restricting topology to a nearest-neighbor
(linear topology) interaction, while [13] claim a factor of four.

n m 0 1 2 3 4
2 1 2 3 - -
3 3 9 14 20 -
4 8 22 54 73 100

TABLE I
Upper bound on CNOT gate count when synthesizing a m qubit circuit into
n qubits, with m ≤ n. Data is presented by [13]. The counts for n =m are
introduced by [15]. The counts for state preparation (m = 0) on two and
three qubits are presented by [28], and the count for state preparation on
four qubits is introduced by [13]. The generalization and upper bound of is
derived by [13]. Note that the CNOT counts grow very fast. For example,

the upper bound on any unitary on 10 qubits is about 500,000 CNOT gates.

1) Circuits and Algorithm Equivalence: A quantum trans-
formation can be implemented by multiple distinct quantum
circuits. When reasoning in terms of unitaries, there exist mul-
tiple decompositions of the unitary into terms that represent
gates. Furthermore, when running on hardware, the unitary
executed is often subtly different from the intended unitary.

Thus, it is often the case where we want to perform
a particular quantum operation A and because of external
constraints we end up performing an approximation B, where

B ≠ A. Deciding which algorithm has executed is often
referred to as distinguishability and several metrics with op-
erational motivation have been proposed. Trace distance and
fidelity [29]–[31] have been proposed for distinguishing states.
Metrics such as the diamond norm [32] have been introduced
to distinguish processes (algorithms).

Synthesis algorithms use norms to assess the solution qual-
ity, and their goal is to minimize ∥U −US∥, where U is
the unitary that describes the transformation and US is the
computed solution. They choose an error threshold ε and use
it for convergence, ∥U −US∥ ≤ ε. Early synthesis algorithms
use the diamond norm, while more recent efforts [14], [33]
use the Hilbert-Schmidt inner product between the conjugate
transpose of U and Us. This is motivated by its lower
computational overhead.

⟨U,Us⟩HS = Tr(U †Us) (3)

C. Quantum Processors

Depending on the qubit technology, quantum processors
may support different native gate sets, and qubits may be
connected in different topologies. We target processors with
superconducting qubits since they implement a variety of
topologies [2], [18], [19], [34] and are more available. Most
offer a native gate set consisting of rotations and CNOT gates
{Rx(90),Rz(θ),CNOT}. Our results are easily generalized
across superconducting qubit architectures which tend to sup-
port rotations and a single two qubit gate (CNOT , CRZ or
SWAP).

While topology is important for superconducting qubits,
implementations using trapped ion [35] qubits provide all-to-
all connectivity through Mølmer-Sørensen [36] gates.

III. SYNTHESIS ALGORITHM

Our goal is to design an algorithm that addresses currently
perceived shortcomings of synthesis and that can be easily
extended to new hardware in order to enable design space
exploration in quantum programming. To be useful during the
NISQ device era we use CNOT count as our primary opti-
mality criteria. The synthesis algorithm described in the rest
of this section combines a generalized space of parameterized
circuits with an approximate A* search [16].

Intuitively, search based synthesis methods rely on the
following approach. They start by “enumerating” the space of
possible solutions. The construction of this space guarantees
that if a solution exists, it will be contained in the enumeration.
Then they start walking this space looking for solutions.
Previous work uses “randomized” walk through genetic al-
gorithms or Monte-Carlo methods. In contrast, we use a more
regimented approach where we formulate the problem as a tree
search and can then deploy established algorithms; in our case
we use the A* search algorithm. An example of the evolution
of a search on a three qubit circuit is depicted in Figure 2.

A. Formulation of Synthesis as a Tree Search Problem

We formulate the problem of synthesis as a tree/graph
search problem on circuit structures. The root node of our



tree consists of U3 gates on every qubit line. For each node
in the tree, there is one child for each possible CNOT position,
which we can construct by adding a CNOT in that position,
followed by two U3 gates on the qubit lines affected by the
new CNOT.

For any circuit that can be constructed with a finite number
of CNOT and U3 gates, our tree contains a node that can
represent it. We will now provide constructive proof.

As a base case, the empty circuit, which contains 0 gates,
implements the identity matrix, which can be represented by
the root node with zero for all of its parameters, which also
implements the identity. Now, assume that we can represent
all circuits with up to i gates. Given a circuit of length i + 1,
we can take the first i gates, and find the node in our tree for
it. For the last gate, if it is a CNOT , we can represent it by
choosing the child of the node for the first i gates that appends
a CNOT in that position, and set the parameters of the two
following U3 gates to 0. If the last gate is a U3, notice that
the last gate on every qubit line in our circuit structure for any
of our nodes is a U3 gate. The root node contains solely U3
gates, and any node further down the tree builds on the root
node, so no qubit line is empty. The last gate on a qubit line
is never a CNOT because we add U3 gates immediately after
every CNOT . Therefore, the last U3 of the i + 1 circuit is
next to a U3 gate in the i circuit, and we can combine these
two U3 gates into a single U3 gate with different parameters,
and we can use the same node in the tree. We have now found
a representation of the circuit of length i + 1 in our tree.

The gate-set of U3 and CNOT is universal for quantum
computing, meaning that any unitary matrix can be represented
by a circuit consisting of only those gates. Since our tree
contains a representation of any such circuit, our tree can
represent a circuit that implements any given unitary. Note that
a similarly complete tree can be constructed for any universal
gateset, such as by using a different multi-qubit gate instead
of CNOT in the branching factor of the tree. Since our tree
is organized such that circuits with fewer CNOT gates have a
lower depth, if we find a lowest depth circuit that implements
a given unitary, it will be a solution of lowest CNOT count.
We have now reduced the problem of finding a circuit for a
given unitary with the lowest CNOT count to a tree search
problem, and then the numerical problem of finding values
for the parameters. The first problem we can solve via A*
search, and the second we can solve using numerical optimizer
methods.

B. The Synthesis Algorithm

Our algorithm begins with a target unitary Utarget, and a
target gate-set. It also requires an acceptability threshold ε,
and a CNOT count limit δ. The threshold ensures the solution
is indistinguishable from the target. The CNOT count limit
ensures termination and it is selected as depth bounds provided
by other competing [13] methods: if we haven’t found a
solution there are better methods available and we stop. The
procedure is described in Algorithms 2 and 1.

The algorithm relies heavily on a successor function s(n),
which takes a node as input and returns a list of nodes, and an
optimization function p(n,Utarget), which takes a node and
a unitary as input and returns a distance value. The function
h(n) is a heuristic function employed by A*, described in the
next section.

The successor function, s(n), is defined based on the target
gate-set and topology. Given a node n as input, s(n)generates
child nodes by appending a CNOT followed by two U3 gates,
using the scheme described in III-A. Generating circuits this
way results in minimized CNOT-count at the expense of more
single-qubit gates than necessary, which is usually a desirable
tradeoff. Single-qubit gate count can be reduced via post
processing or by using a different successor function. Different
topologies are supported by limiting the positions on which
CNOT gates are placed, and other gatesets are supported by
replacing CNOT with a different multi-qubit gate.

The optimization function, p(n,Utarget), is used to find
the closest matching circuit to a target unitary given a circuit
structure. Given a node n and a unitary Utarget, let U(n,x)
represent the unitary implemented by the circuit structure rep-
resented by n when using the vector x as parameters for the pa-
rameterized gates in the circuit structure. D(U(n,x), Utarget)
is used as an objective function, and is given to a numerical
optimizer, which finds d = minxD(U(n,x), Utarget). The
function p(n,Utarget)returns d.

The algorithm begins by generating the root node, which
describes a circuit structure with one U3 gate on each qubit
line. The distance value is found for the root node using
p(n,Utarget). These variables are initialized using the root
node. The algorithm creates a priority queue that chooses the
node n that minimizes f(n), and initializes the queue with the
root node as the first entry. Now the algorithm enters a loop,
in which it pops nodes from the queue. If no node remains in
the queue, the algorithm exits with no solution. Otherwise, a
node n is successfully popped from the queue. Its successors
n1-nk are generated using s(n). For each successor node ni,
the distance di = p(ni) is calculated in parallel. If di < ε,
the current circuit ni is deemed acceptable and is returned.
Otherwise, if the CNOT count of ni is within the limit δ,
the node ni is pushed onto the priority queue. If there is no
acceptable solution with fewer than δ CNOT gates, eventually
all possible structures within the given limit will be tried, and
no solution will be returned.

The node that is returned from the algorithm, nfinal, repre-
sents a circuit structure that includes a circuit that implements
Utargetto a distance within ε. To find the specific circuit,
the same numerical optimizer can be used, but this time to
find xm = argminxD(U(n,x), Utarget). In practice, it is not
necessary to re-run the optimizer since optimizer functions
generally return both the minimum value and the values of
the parameters that minimize it. The pair of nfinal and xm
constitute a complete description of a quantum circuit, and can
be directly converted to quantum assembly.
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Fig. 2. (A) Basic circuit block used for expanding the solution. We generate all alternatives where this structure is placed on linked qubit pairs. Each step
adds six additional parameters to the optimization problem. (B) Example evolution of the search algorithm for a three qubit circuit. We start by placing a
layer of single qubit gates, then generate the next two possible solutions. Each is evaluated and in this case the upper circuit is closer to the target unitary,
leading to a smaller heuristic value. Since this circuit This circuit is then expanded with its possible two successors. These are again instantiated by the
optimizer. The second circuit from the top has an acceptable distance and is reported as the solution. The path in blue shows the evolution of the solution.
The ansatz circuits enclosed by the dotted line have been evaluated during the search.

Algorithm 1 Helper Functions
1: function S(n)
2: return {n + CNOT +U3⊗U3for all possible CNOT positions}
3:
4: function P(n, U )
5: return minxD(U(n,x),U)

6:
7: function H(d)
8: return d ∗ a ▷ a is a constant determined via experiment. See section 3.3.1

Algorithm 2 Search Synthesis
1: function SYNTHESIZE(Utarget, ε, δ)
2: n← representation of U3 on each qubit
3: push n onto queue with priority H(dbest)+0
4: while queue is not empty do
5: n← pop from queue
6: for all ni ∈S(n) do
7: di ← P(ni, Utarget)
8: if di < ε then
9: return ni

10: if CNOT count of ni < δ then
11: push ni onto queue with priority H(di)+CNOT count of ni

C. A* Search Strategy

The A* algorithm has been developed for graph traversals
and it attempts to find a path between a start and target node.
At each step, a partial solution is expanded using a successor
function, and the successors are added to a priority queue.
Then a new partial solution is chosen from the queue that
minimizes a cost function. The first path from start to finish
is the final solution. Given a partial solution, the algorithm
picks the next partial solution based on the cost of its already
computed path and an estimate of the cost required to extend
it all the way to the target. A* selects the successor node n
that minimizes f(n) = g(n) + h(n) where

● f(n) is the estimated total cost of the path from start to
finish

● g(n) is the cost of the path from the start to n
● h(n) is a heuristic function that estimates the cost of the

cheapest path from n to the target

The algorithm terminates when it reaches the target node or
if there are no paths eligible to be extended. The heuristic
function is problem-specific and directly determines the time
complexity of A*. If the heuristic function is admissible,
meaning that it never overestimates the actual cost to get to
the target, A* is guaranteed to return a least-cost path. A* can
be run with an inadmissible heuristic to obtain sub-optimal
solutions with a faster runtime than it would take to obtain
guaranteed optimal solutions.

For synthesis, the selection of g(n) is obvious as the CNOT
count of the partial solution n. The challenge was to determine
the heuristic function h(n). After attempts at derivation from
first principles, we have opted for a data-driven approach,
which is described below.

1) Heuristic Function Tuning: We first use breadth first
search for synthesis on training three qubit circuits and exam-
ine the details along the final paths . At each partial solution



along the path, we recorded the distance value at that step
and compared it to the remaining number of CNOT gates
(calculated by subtracting the current number of CNOT ’s at
that step to the final value reach in that run of the program). We
then fit the data, and found a best fit line with slope a = 9.3623.

The fit gives us the heuristic function h(n) =

D(U(n,xm), Utarget) ∗ 9.3623, or h(n) = p(n,Utarget) ∗
9.3623. Although the fit was not very well correlated (r2 =

0.4102), we found experimentally that the heuristic yielded
excellent results. Running the same set of benchmarks with
the A* heuristic, we found that the same quality solutions
were found, but runtime was significantly faster. For example,
brute force search for three qubit QFT takes one hour, while
A* takes only seconds.

D. Unitary Distance Metric

We use the following distance function based on the Hilbert-
Schmidt inner product. If N is the dimension of the unitaries,

D(U,Utarget) = 1−
⟨U,Utarget⟩HS

N
= 1−

Tr(U †Utarget)

N
(4)

The formula is based on the fact that the inverse of a unitary
matrix is its conjugate transpose. If the synthesis succeeds and
U is not distinguishable from Utarget, the product U †Utarget =
IN , where I is the identity matrix. Furthermore, the maximum
magnitude that the trace of a unitary matrix can have is its size
N, which occurs at the identity (up to a phase). The closer
U †Utarget is to identity, the closer Tr(U †Utarget)

N
is to N , thus

the closer our distance function is to 0.
Note that variations of formulas using Hilbert-Schmidt

inner product have been previously used in synthesis algo-
rithms [14], [37], and ours has the following properties

● The distance is 0 when compilation is exact.
● It is fast to compute.
● It has operational meaning.

E. Gradient Computation

Numerical optimizers can find solutions with far fewer
objective function calls if they can take advantage of the
gradient or Jacobian. We provide a O(n) complexity algo-
rithm to compute the Jacobian of the function described in
Equation 4, with implementation details omitted for brevity.
The mathematical formulation relies on defining the complex
absolute value as ∣x∣ =

√

Re(x)2 + Im(x)2 and reformulating
the distance function as described in Equation 5. Equation 6
shows the Jacobian formula.

D(U,Ugoal) = 1 − ∣∑Ui ⋅U
∗
igoal

∣ (5)

dD(U,Ugoal)

dx
= −

1

1 −D(U,Ugoal)
(Re(∑Ui ⋅U

∗
igoal

)∑Re(Uigoal
)
dIm(Ui)

dx
+

Im(∑Ui ⋅U
∗
igoal

)∑Im(Uigoal
)
dIm(Ui)

dx
)

(6)

IV. EVALUATION

Software Implementation: We implemented our algorithm in
Python 3.7.4, using numpy 1.14.4 and in Rust 1.44.0. Soft-
ware is available at https://github.com/WolfLink/qsearch.
We experiment with the COBYLA, BFGS, and Levenberg-
Marquardt numerical optimizers provided with scipy 1.2.0.
We use multiprocessing.Pool for parallelism. Most of the
tests ran on a desktop computer with a 4.6GHz Ryzen 9 3900X
processor with 12 cores for a total of 24 threads.
Benchmarks: The benchmark suite is composed of third party
algorithms used by other evaluation studies [20], [22]. We
consider circuits with known optimal implementations, such
as Quantum Fourier Transform [38], HHL [39] and important
quantum kernels such as Toffoli gate. These allow us to show-
case the optimality of our solution. We also consider circuits
from domain generators such as the Variational Quantum
Eigensolver [40] (VQE) or Transverse Field Ising Models [22],
[41]–[43] (TFIM). As no optimal depth circuit is known for
these algorithms, they allow us to showcase the benefits of
synthesis for circuit optimization. In addition to qubit based
circuits we consider the qutrit circuits described in [23].
Experimental Results: Our goal is to demonstrate the value
of synthesis to practitioners under several usage scenarios: 1)
compiling unitaries; 2) circuit optimization; and 3) gate set
design exploration. A summary of the results is presented in
Table 3. The columns labeled CNOT show our implementa-
tion, annotated with the topology of the target chip. Besides
circuit depth, we present the Hilbert-Schmidt distance of the
solution and total compilation time.
Customizing for QPU Gate Set and Topology: We target
directly the gate set native to the quantum processor. Our initial
implementation was tailored for the QNL8QR-v5 processor
which supports in hardware the Rx(90),Rzθ,CNOT gates
and its qubits are connected in a line topology. We have also
re-targeted the algorithm for the IBM Q 5 qubit chip, with a

similar native gate set but a bow-tie/triangle topology.
Use Cases: To showcase the extensibility of the proposed
approach we consider synthesis of qutrit gates, a problem of
interest to hardware and algorithm designers. To showcase the
usability for other algorithmic purposes we consider gener-
ating state preparation circuits. To showcase the interaction
between synthesis and the rest of the software development
stack (optimizing compilers and mappers) we examine using
synthesis during the circuit optimization phase. In addition,
we are interested in determining the impact of specializing the
synthesis algorithm for a different topology. For this, we report
the length of the synthesized circuits after being compiled and
optimized using QISKit. For example, the “CNOT+QISKit”
label describes the experiment where we compile our gener-
ated circuit with QISKit.
Comparison with State-of-the-Art: In Table 3, the column
labeled UQ shows the number of CNOTs generated by the
UniversalQ [21] compiler, a state-of-the-art synthesis tool that
uses internally multiple linear algebra based decomposition



methods, including Cosine-Sine. For UQ, we report the best
result obtained by any decomposition method available.

A. Solution Optimality

In all cases illustrated in Table 3 we were able to synthesize
circuits shorter than the theoretical upper bounds provided
by [13]: the bound for Q=3 is 20 CNOTs. When comparing
against the UniversalQ compiler, we generate significantly
shorter circuits, using on average 2.4× fewer CNOTs, and as
high as 5.3×.

At small qubit count, perhaps the most important com-
parison is against the length obtained by hand optimization.
From this perspective our algorithm behaves well. For exam-
ple, the optimal CNOT count for Toffoli [44] is six, which
our algorithm matches. When mapping to a linear topology,
implementations introduce extra SWAPs, up to a total of 12
CNOT gates. Our linear topology Toffoli contains only eight
CNOTs. The Fredkin gate is usually implemented as Toffoli
sandwiched between two more CNOT gates. Hand optimized
Fredkin for linear topologies is available in Cirq [26] with nine
CNOTs, while our implementation uses only eight. On a well
connected IBM topology we synthesize a Fredkin using only
seven CNOTs: IBM QISKit will produce a circuit with eight
CNOTs.

The HHL implementation was obtained from the QNL8QR-
v5 development team. Mapped to a linear topology by hand,
the circuit had seven CNOT gates, while our implementation
contains only three.

For QFT3, we match the best known CNOT count of six
for the fully connected topology, and improve on the previous
best of nine for the linear topology with our circuit of seven
CNOTs.

B. Impact of Topology

Embedding the circuit topology within the synthesis algo-
rithm matters, perhaps even more than developing an optimal
algorithm for well connected topologies.

The first observation is that existing algorithms report
large (4×) proportionality constants when specializing for
a restricted topology. In our case we observe only modest
increases, up to 15% for the workload and for only five of the
tested circuits. In some cases, we obtain circuits shorter than
previously known. This indicates that we can handle restricted
topologies well.

Even more important is the empirical observation that the
rest of the compilation toolkit (circuit optimizers + mappers)
can only increase (never decrease) the depth of our synthesized
circuits. This is illustrated in Table 3 by the columns with
the label “QISKit”. In the first experiment, we take the
circuits synthesized for a linear topology and compile them
with QISKit for the better connected bowtie topology. We
enable the highest level of optimization available. The circuits
optimized and mapped by QISKit have the same length as
the input circuits. In the second experiment, data presented in
the Table, we compile the circuits synthesized for the bowtie
with QISKit configured for a linear topology. In this case we

observe a 53% average increase in CNOT count, with values
as high as 4×.

To us, this indicates that if the goal for NISQ devices is
obtaining optimally short circuits, techniques like ours are
more likely to deliver consistently than traditional optimizers
and mappers.

C. Synthesis and Circuit Optimization

Optimal implementations for the “EntangledX”, TFIM-*
and “IBM Challenge” circuits are not available. Thus, they
provide an illustration of the benefits of synthesis embedded
in the circuit optimization workflow.

The “EntangledX” gate is a building block for a VQE
implementation using the [[4,2,2]] error detection code [45]
and it is parameterized by a rotation angle. The authors run
the circuit iteratively by sampling the parameter for robust
behavior, directed by the results from the previous run. Their
hand optimized version contains four CNOT gates, which we
match for most values of the rotation angle. For some angles,
we were able to achieve circuits with only two or three CNOT
gates. Note that due to its low execution time of 0.34s, the
circuit can be resynthesized in real time during the actual
execution on hardware.

TFIM is an exponent of chemical simulations using time
dependent Hamiltonians. In this case, domain generators ap-
pend a fixed function block per time step and circuit depth
grows linearily. Domain generators concentrate in reducing
“block” depth and can’t avoid linear growth. We show circuits
generated using the generator described Bassman et al [22] for
an increasing number of timesteps up to 60. For all cases we
generated circuits with no more than 6 CNOTs, even when
the original circuits contained 80+ CNOTs. This amounts to
a more than a 10× depth reduction. For comparison, Bassman
et al report reductions in circuit depth up to only ≈ 2× when
using their domain specific optimizer.

The “IBM Challenge” circuit has been obtained from a
recent IBM Qiskit public programming challenge, in which
we were able to match the best CNOT count that competitors
were able to produce.

D. Retargeting to Qutrits

Qutrits extend qubits to systems with three logical values
0, 1 and 2. They are represented by unitaries from SU(3) and
extend from binary to ternary logic to explore a space with
3n dimensions. There exist several [46], [47] decompositions
and parameterizations, all using eight independent parameters.
Gates to implement qutrit operations have been explored only
recently [23] for qubit based systems, mostly motivated by the
need [48] for modeling physical phenomena.

For our study, we implement a CSUM two-qutrit gate,
which adds the value of the first qutrit to the second qutrit
CSUM(∣11⟩) = ∣12⟩ and it uses single- and two-qutrit gates.
Our synthesis matches the hand optimized implementation
by [23]. For brevity, we omit detailed results.



CNOT count Mapped by QISKit to linear topology Unitary distance Compile time (s)

ALG Qubits Ref CNOT CNOT UQ UQ ∣∣ ∣∣ ∣∣ ∣∣ T( ) T( ) T(UQ)

QFT 3 6 7* 6* 15 7 13 27 1.33 ∗ 10−14 2.22 ∗ 10−16 1.45 0.99 < 1

Fredkin 3 8 8 7 9 8 16 26 1.76 ∗ 10−14 0.0 2.22 4.89 < 1

Toffoli 3 6 8 6 9 8 12 21 1.14 ∗ 10−14 0.0 1.47 1.91 < 1

Peres 3 5 7 6 19 7 5 47 1.13 ∗ 10−14 3.33 ∗ 10−16 0.65 0.75 < 1

HHL 3 N/A 3* 3* 16 3 3 21 1.25 ∗ 10−14 0.0 0.30 0.40 < 1

Or 3 6 8 6 10 8 9 19 1.72 ∗ 10−14 4.44 ∗ 10−16 1.68 2.34 < 1

EntangledX* 3 4 2,3,4 2,3,4 9 4 16 21 1.26 ∗ 10−14 2.22 ∗ 10−16 0.34 0.50 < 1

TFIM 3 3 3 4 4 4 17 4 4 32 0.0 2.22 ∗ 10−16 1.03 0.92 < 1

TFIM 6 3 3 8 6 6 17 6 6 38 4.44 ∗ 10−16 4.44 ∗ 10−16 3.66 4.84 < 1

TFIM 42 3 3 56 6 6 17 6 7 35 8.88 ∗ 10−16 8.88 ∗ 10−16 1.65 1.99 < 1

TFIM 60 3 3 80 6 6 17 6 6 41 6.66 ∗ 10−16 8.88 ∗ 10−16 1.25 1.04 < 1

QFT 4 N/A 14 89 14 6.66 ∗ 10−16 56750 < 1

TFIM 30 4 4 60 11 87 11 9.08 ∗ 10−11 30135 < 1

IBM Challenge 4 N/A 4 DNR 4 0.0 314 < 1

Fig. 3. Summary of synthesis results for several algorithms and unitaries The topology used during synthesis is denoted in the caption. Theoretical CNOT
count upper bound for 3 and 4 qubits are 20 and 100 respectively. *Some gates occasionally resulted in circuits with different CNOT counts due to the optimizers
getting stuck in local minima, so the best run out of 10 is listed but the CNOT count was occasionally 1 more for these cases. The gate ”EntangledX” is
a parameterized gate, and for certain combinations of parameters we were able to produce solutions with fewer CNOTs than the hand-optimized general
solution.
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Fig. 4. KL-divergence comparison for stare preparation circuits.

E. Synthesis and State Preparation

We have retargeted the algorithm to generate state prepa-
ration circuits by changing the distance function to measure
the distance from a target state to the state generated by the
unitary/circuit performed on the ∣0⟩ state. We validate the
quality of the solution on all basis states and 30 randomly
generated states, including two maximally entagled. When
compared against the state preparation generator from IBM
Qiskit running on the Yorktown chip, we measure an average
KL-divergence of 7.1 ∗ 10−2 and 1.37 ∗ 10−1 respectively.
Besides generating a better quality circuit as illustrated by the
differences in the KL-divergence, our circuits are on average
36% shorter than the IBM generated circuits. Figure 4 provides
a summary of the results.

F. Acceptability Threshold Tuning

Our algorithm terminates upon finding a circuit with a
distance value within an acceptability threshold ε. Its value is
determined by two requirements: 1) the implementation should
be able to meet it in terms of numerical accuracy; and 2) the
resulting unitary should be indistinguishable from the original.

For the first criteria we tried synthesizing four of our
benchmarks threshold limits at powers of ten ranging from 0.1
to 10−12. We found that with only two exceptions, threshold
limits in the range 0.01 ≤ ε ≤ 10−12 resulted in final solutions
with distance on the order of 10−12−10−14. The two exceptions
were both 3-qubit QFT solutions, one with a solution on
the order of 10−10 and one with 10−8. We concluded that a

threshold of 10−10 will ensure we have the best quality answer
our numerical optimizers will be able to give us.

To ensure this threshold is sufficient for real world ap-
plications, we ran another experiment to relate matrix dis-
tance to the KL divergence of probability distributions. We
generated random unitaries that are close to the identity and
multiplied these by fully random unitaries. For each pair of
fully random unitary and the product of random unitary and
near-identity unitary, we recorded the matrix distance and the
KL divergence between the final probability distributions after
measuring the result of applying the two unitaries to the same
randomly generated state vector, recording the worst case KL
divergence after trying 1000 random state vectors. The results
showed a clear correlation between KL divergence and Hilbert-
Schmidt distance, with the acceptability threshold of 10−10

yielding a maximum KL divergence of 2.56 ∗ 10−9. Even
for a looser threshold of 10−8, the maximum KL divergence
was 5.20 ∗ 10−8, so the threshold might even be loosened in
practice.

G. Solution Quality

The Hilbert-Schmidt distance between our solution and the
original unitary is presented in Table 3. The values range
from 10−14 to 10−17. We tested the resulting circuits on 1,000
random input state vectors and found that the results are
indistinguishable from the target unitary.

We only report the total number of CNOT gates in the
generated circuit. The number of parameterized single-qubit
gates we generate in a circuit with Q qubits and N CNOTs
is Q + 2 ∗ N . Generally before running on hardware, each
parameterized single-qubit gate is split into five single qubit
rotations.

H. Running Time and Scaling

The running time of our algorithm is presented in Table 3.
Optimal circuit synthesis is a harshly scaling problem; as the
number of qubits increases, the size of unitaries increases
exponentially, the branching factor of the search tree increases,
and the average circuit depth increases leading to more
variables for optimization as well as deeper exploration in



the search tree. We employ several approaches to mitigate
these scaling factors in order to demonstrate that high-quality
search-based synthesis is practical for NISQ circuits.

We are able to mitigate the scaling factors due to longer
circuits with more variables for optimization by taking ad-
vantage of high-performance numerical optimizers. Better
numerical optimizers are able to find solutions with fewer
objective function evaluations, reducing the impact of larger
unitaries. We have experimented both with derivative-free
optimizers CMA-ES [49], COBYLA, and BOBYQA, as well
as with gradient-based optimization using the formulae in
Section III-E and BFGS and Levenberg-Marquardt. For brevity
we omit a detailed comparison but note that the Ceres [50] im-
plementation of Levenberg-Marquardt with gradients provides
up to 100× execution time improvements when compared
to the implementation of COBYLA provided in scipy, with
better scaling as the number of variables increases. In our
implementation, the total number of parameters given a circuit
with Q qubits and depth d is Num Params = 3∗Q+5∗d, and
judging by the behavior of QFT circuits synthesized with our
algorithm, CNOT count roughly doubles with each additional
qubit.

We are able to mitigate the scaling factors due to more
difficult search problems by employing smart search algo-
rithms such as A* in order to reduce the number of nodes
we evaluate during the search. We have focused on minimal
circuit length at the expense of runtime for this paper, but
we have been able to perform faster synthesis at the expense
of producing longer circuits by employing differently tuned
search algorithms. We are also able to mitigate search scaling
issues by employing beam search, popping multiple nodes off
of the top of the queue at a time, in order to take better
advantage of parallelism. Beam searching allows us to evaluate
nodes that we would otherwise have to backtrack to in parallel
rather than sequentially.

We are further able to mitigate scaling factors by providing a
well-optimized implementation. We use a Rust implementation
of our matrix computation library which performs up to
10× faster than the original Python implementation. The gate
parameterization is minimized by replacing the parameterized
single qubit gate after the control line of a CNOT gate with
a simpler parameterization with only two parameters (because
a parameterized Z gate can commute through the control line
of a CNOT and can be absorbed by the parametereized gate
on the other side).

V. DISCUSSION

Overall, we believe our results are very encouraging and
show the general applicability of quantum circuit synthesis
techniques during the NISQ decade(s). Looking back, the field
has progressed steadily. Solovay and Kitaev opened the field
by showing that a solution exists when using any universal gate
set. Later efforts show that solutions exist when restricting the
gate sets to “almost native”. The emphasis then moved on
to reducing the length of produced circuits, and the field has

steadily progressed from computing impractically long circuits
to computing decent solutions.

We have shown concrete results where we match the short-
est known depth for several algorithms, we have shown results
where we reduce depth for constrained topologies (line) and
we have shown the retargetability of the implementation to
new gate sets. Equally important, we have shown empirical
evidence that traditional optimization techniques (peephole
optimizers and mappers) are unlikely to match the quality of
the circuits generated by synthesis. We believe that the results
alleviate some of the doubts faced by synthesis approaches:
generated circuits are too deep and there is no topology
awareness.

Due to its potential, we believe a roadmap for synthesis
targeting NISQ devices is worth developing. For practical
purposes, it is essential to produce circuits short enough to
run on hardware with acceptable error. It is also important
for synthesis runtime to scale reasonably. Given that we have
shown optimality and topology awareness, for the near future,
scalability at small qubit scale is worth exploring as it will lead
to establishing robust building blocks for approaches targeting
larger number of qubits.
Synthesis for early NISQ (small) circuits:

● Better numerical optimizers. The judicious choice of
the numerical optimizer is probably the most important
factor. The second step is to employ meta-optimization
techniques, such as multi-start techniques. It is also
worth considering building ad-hoc optimizers for synthe-
sis based on tensor networks and gradient descent. These
have the advantage of high GPU performance.

● Better parallelization of the search algorithm. Currently
we leverage two levels of parallelism: BLAS for par-
allelism within matrix computations, and multiple pro-
cesses for simultaneous invocations of the numerical
optimizer. Currently, our matrices are too small to take
full advantage of BLAS, and while we use beams to
increase the number of ansatz circuits we optimize in
parallel, this improvement has diminishing returns. We
expect both of these avenues of parallelism to become
more useful with larger circuits.

Synthesis for late NISQ (large) circuits: For circuits with
tens of qubits memory and computational requirements for
synthesis may be prohibitive, as unitaries scale exponentially
with 2q . Given an already existing circuit, a straightforward
way to incorporate synthesis is to partition it in manageably
sized blocks, optimize these individually, and recombine. For
algorithm discovery, synthesis will have to be incorporated
into generative models for domain science.

VI. RELATED WORK

A fundamental result, which spurred the apparition of
quantum circuit synthesis is provided by the Solovay Kitaev
(SK) theorem. The theorem relates circuit depth to the quality
of the approximation and its proof is by construction [4]–
[6]. Different approaches [4], [7]–[9], [51]–[57] to synthesis
have been introduced since, with the goal of generating shorter



depth circuits. These can be coarsely classified based on
several criteria: 1) target gate set; 2) algorithmic approach;
and 3) solution distinguishability.
Target Gate Set: The SK algorithm is applicable to any
universal gate set. Later examples include synthesis of z-
rotation unitaries with Clifford+V approximation [58] or Clif-
ford+T gates [59]. When ancillary qubits are allowed, one
can synthesize single qubit unitaries with the Clifford+T
gate set [59]–[61]. While these efforts propelled the field of
synthesis, they are not used on NISQ devices, which offer
a different gate set (Rx,Rz,CNOT and Mølmer-Sørensen
all-to-all). Several [13], [15], [37] other algorithms, discussed
below have since emerged.
Algorithmic Approaches: The earlier attempts inspired by
Solovay Kitaev use a recursive (or divide-and-conquer) formu-
lation, sometimes supplemented with search heuristics at the
bottom. More recent search based approaches are illustrated
by the Meet-in-the-Middle [8] algorithm.

Several approaches use techniques from linear algebra for
unitary/tensor decomposition. [53] use QR matrix factorization
via Given’s rotation and Householder transformation [54], but
there are open questions as to the suitability for hardware
implementation because these algorithms are expressed in
terms of row and column updates of a matrix rather than in
terms of qubits.

The state-of-the-art upper bounds on circuit depth are pro-
vided by techniques [13], [15] that use Cosine-Sine decompo-
sition. The Cosine-Sine decomposition was first used by [62]
for compilation purposes. In practice, commercial compilers
ubiquitously deploy only KAK [12] decompositions for two
qubit unitaries.

The basic formulation of these techniques is topology inde-
pendent. Specializing for topology increases the upper bound
on circuit depth by large constants; [15] mention a factor of
nine, improved by [13] to 4×. The published approaches are
hard to extend to different qubit gate sets and it remains to be
seen if they can handle qutrits1. Furthermore, the numerical
techniques [63] required for CSD still require refinements as
they cannot handle numerically challenging cases.

Several techniques use numerical optimization, much as we
did. They describe the gates in their variational/continuous
representation and use optimizers and search to find a gate
decomposition and instantiation. The work closest to ours
is [37] which uses numerical optimization and brute force
search to synthesize circuits for a processor using trapped
ion qubits. Their main advantage is the existence of all-to-all
Mølmer-Sørensen gates, which allow a topology independent
approach. The main difference between our work and theirs is
that they use randomization and genetic algorithms to search
the solution space, while we show a more regimented way.
When Martinez et al. describe their results, they claim that
Mølmer-Sørensen counts are directly comparable to CNOT
counts. By this metric, we seem to generate comparable or

1 [46] describes a method using Givens rotations and Householder decom-
position.

shorter circuits than theirs. It is not clear how their approach
behaves when topology constraints are present. The direct
comparison is further limited due to the fact that they consider
only randomly generated unitaries, rather than algorithms or
well understood gates such as Toffoli or Fredkin.

Another topology independent numerical optimization tech-
nique is presented by [14]. The main contribution is to use a
quantum annealer to do searches over sequences of increasing
gate depth. They report results only for two qubit circuits.

All existing studies focus on the quality of the solution,
rather than synthesis speed. They also report results for low
qubit concurrency: Khatri et al. [14] for two qubit systems,
Martinez et al. [37] for systems up to four qubits.
Solution Distinguishability: Synthesis algorithms can be
classified as exact or approximate based on distinguishability.
This is a subtle classification criteria, as many algorithms
can be viewed as either. For example, [8] proposed a divide-
and-conquer algorithm called Meet-in-the-Middle (MIM). De-
signed for exact circuit synthesis, the algorithm may also be
used to construct an ε-approximate circuit. The results seem
to indicate that the algorithm failed to synthesize a three qubit
QFT circuit. Furthermore, on NISQ devices, the target gate
set of the algorithm (e.g. T gate) may be itself implemented
as an approximation when using native gates. We classify our
implementation as approximate since we rely on numerical
optimization and therefore must accept solutions at a small
distance from the original unitary.

VII. CONCLUSION

In this work we have shown methods to compile arbitrary
quantum unitaries into a sequence of gates native to several
superconducting qubit based architectures. The algorithm we
develop is topology aware and easily re-targeted to new gates
sets or topologies. Results indicate that we can match, or even
improve on the shortest depth circuit implementation published
for several widely used algorithms and gates, especially when
topology is restrictive. We also show empirical evidence which
supports an important conjecture: the benefits of incorporating
topology directly into synthesis cannot be replicated if relying
on all-to-all synthesis and traditional (peephole base) optimiz-
ing quantum compilers or mappers.

The method is slow but produces good results in practice.
For the early NISQ era, which is likely to be characterized by
hero experiments, the overhead seems acceptable. Even when
superseded by faster algorithms, we believe our results provide
a good quality measure threshold for these implementations.

Looking forward, better numerical optimizers would en-
hance the palatability of quantum circuit synthesis by alleviat-
ing some of the need for developing better search algorithms.
Additionally, search algorithm development will need to bal-
ance runtime with circuit length optimality.
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